
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dakota Software Training

Interfacing to a Simulation

http://dakota.sandia.gov

SAND2015-6867 TR

Module Learning Goals

Understand:

 … the mechanics of how Dakota communicates with and runs
a simulation

 … the requirements this places on the user and interface

 … some basic strategies for developing a simulation interface

 … some of the convenience features Dakota provides for
managing simulation runs

 2

Module Outline

 What happens during a Dakota evaluation

 Considerations for creating a parameterized workflow

 Pre-processing

 Post-processing

 Demonstration

 Exercise

 Dakota input interface specification

3

WHAT HAPPENS DURING A
DAKOTA EVALUATION

Interfacing

4

Cantilever Beam

Model

DAKOTA Input File DAKOTA Output Files

Code

Input

Code

Output

DAKOTA Parameters File
{x1 = 123.4}

{x2 = -33.3}

Use APREPRO/DPREPRO

to cut-and-paste x-values

into code input file

User-supplied automatic

post-processing of code

output data into f-values

DAKOTA executes
sim_code_script

to launch a simulation

job

DAKOTA Results File
999.888 f1

777.666 f2

DAKOTA Executable

Method

Variables Responses

Interface

Dakota to Simulation Workflow

A Typical Dakota Evaluation

1. Dakota writes a parameters file that contains
one value for each variable

2. Dakota invokes the user’s interface, passing to
it the filesystem path/names of the parameters
and results files as command line arguments

3. The user’s interface driver performs three
tasks:

1. Pre-processing: Create simulation input using
values from the Dakota parameters file

2. Run: Run the simulation based on the input

3. Post-processing: Extract scalar quantities of
interest (responses) from simulation output and
write them to the named Dakota results file

4. The user’s interface exits

5. Dakota opens and reads the results file

6

params.in

driver.sh

1. pre-process

2. run simulation

3. post-process

results.out

Dakota

Variables with descriptors:

w, t, L, p, E, X, and Y

Dakota Input: Simulation Contract

 The variables block dictates what Dakota will place in the parameters file

 The interface block indicates what driver will run to perform the mapping

 The response block dictates what Dakota expects back

7

variables
 active all
 continuous_design = 3
 initial_point 2*1.0 10.0
 descriptors "w" "t" "L"
 continuous_state = 4
 initial_state 500. 29.E+6 5. 10.
 descriptors 'p’ 'E' 'X' 'Y'

interface
 analysis_driver = ‘driver.sh'

responses
 response_functions = 3
 descriptors = ‘mass'
 'stress'
 'displacement'
 no_gradients no_hessians

Responses with descriptors:

mass, stress, displacement

Interfacing Preparedness

 “Parameterized” simulations/workflows
 Must know what your parameters are

 Tough if parameters are hard-coded

 Can my analysis be automated/scripted?
 Does your workflow depend on tools that are challenging to automate

on your target platform?

 Is the simulation robust to parameter variations?

 Quantities of Interest (QoIs)
 As with parameters, must know what the responses are

 Can you extract them automatically?

 If your QoI is poorly behaved (nonsmooth, noisy), is there another you
could choose?

8

PRE-PROCESSING
Interfacing

9

Pre-processing

What it is: Converting a Dakota parameters file into usable input
for your simulation

Example tasks:

 Substituting parameter values into a text-based input deck
(“configuring” an input file)

 Passing parameter values to a simulation as command line
arguments, e.g., how2getrich.exe --param1=42 --param2=-1.4

 Running a script or program to generate more complex input
based on parameter values, e.g. parameterized mesh or
geometry in a finite element analysis

 10

Parameters File Format

 6 variables
 2.500000000000000e+000 w
 2.500000000000000e+000 t
 4.000000000000000e+004 R
 2.900000000000000e+007 E
 5.000000000000000e+002 X
 1.000000000000000e+003 Y
 3 functions
 1 ASV_1:mass
 1 ASV_2:stress
 1 ASV_3:displacement
 6 derivative_variables
 1 DVV_1:w
 2 DVV_2:t
 3 DVV_3:R
 4 DVV_4:E
 5 DVV_5:X
 6 DVV_6:Y
 0 analysis_components
 1 eval_id

Dakota uses a parameters file to inform your code of parameter values and to

request responses. (Secs. 9.6 & 9.7 of the User’s Manual for more Info)

Parameter Values

Requested Responses

Parameter Substitution with dprepro

dprepro (Dakota Pre-Processor) is a Dakota-team developed
command line tool to simplify parameter substitution.

1. Create a template input file for your simulation with
parameter values replaced by substitution tokens.

Tokens look like: {dakota_descriptor}

2. Run dprepro. It replaces tokens with corresponding variable
values. Syntax:
 dprepro <parameters file> <template> <input file>

 12

Parameter Substitution with dprepro

13

variables
 continuous design = 2
 descriptors “dak_x1" “dak_x2"

 2 variables
 2.500000000000000e+000 dak_x1
 4.500000000000000e+000 dak_x2

x1 = {dak_x1}
x2 = {dak_x2}

x1 = 2.5
x2 = 4.5

Dakota input file

input.template:
 User-created template

params.in:
 Dakota parameters file

myinput.in:
Simulation Input file, written by dprepro

dprepro params.in input.template myinput.in

Additional dprepro Features

 Token delimiters (left and right braces) can be changed to
other characters or strings:

 dprepro --left-delimiter=‘[[‘ --right-delimiter=‘]]’ ...

 Simple arithmetic statements within tokens will be evaluated.
 {10.0**dakota_descriptor}

 {dakota_descriptor_1 * dakota_descriptor_2}

 Default parameters are also supported:

 {dakota_descriptor = 3.0} replaced by the value of
dakota_descriptor if present in the parameters file, but 3.0
otherwise.

14

POST-PROCESSING
Interfacing

15

Post-processing

What it is: Extracting quantities of interest from simulation
output and placing them in a property formatted and named
Dakota results file

 Extracting QoIs can be challenging—there are no shortcuts
like dprepro!

 If the QoI appears in console or text file output, time-honored
*nix text processing commands can be used to extract it:
 grep, cut, awk, head, tail, tr, bc, etc.

 See http://www.tldp.org/LDP/abs/html/textproc.html for a nice list
with descriptions, instructions, and examples.

 It may be necessary to calculate a QoI from your output, like
the max, min, or integral of a trend

16

http://www.tldp.org/LDP/abs/html/textproc.html
http://www.tldp.org/LDP/abs/html/textproc.html

Results File Format

17

6.2500000000e+00 mass
1.7600000000e+04 stress
1.6943165672e+00 displacement

responses
 response_functions = 3
 descriptors = ‘mass'
 'stress'
 'displacement'
 no_gradients no_hessians

• One response per line
• Value (format unimportant) followed by (optional) descriptor
• Descriptors are ignored; order is what matters!
• No spaces in descriptors
(See Chapters 10 & 11 of the User’s Manual for more information.)

Discussion: Post-processing

 Share with your neighbor a quantity of interest you wish to
study with Dakota.

 In what kind of output file does it appear?

 Is it easy to extract for return to Dakota? Why or why not?

18

Discussion: Post-processing

 Share with your neighbor a quantity of interest you wish to
study with Dakota.

 In what kind of output file does it appear?

 Is it easy to extract for return to Dakota? Why or why not?

 Potential topics:
 Circuit simulator that outputs time/voltage traces in columnar tabular

data; want to extract voltage 4 at time 0, time final, and its max.

 CASL VERA, which outputs on reactor geometry to binary HDF5; want
to extract the outlet pressure and the average pin power.

 Finite element analysis: force integrated over a sideset or nodeset.

 Tools: shell commands, Python, Perl, Matlab, C, C++, Fortran, Java, VBS,

ParaView, VTK, VisIt, etc.

19

EXAMPLE AND EXERCISE
Interfacing

20

Example: Rosenbrock Black Box

 See discussion in Section 10.3 of the Dakota User’s Manual

21

Courtesy Wikipedia

https://en.wikipedia.org/wiki/Rosenbrock_function

Rosenbrock Function

Scenario: Coat Hook Design

Scenario: Your manager would like to place some coat hooks in your
building’s lobby. To ensure they will safely hold heavy winter coats, he
asked you to conduct a computational study, suggesting they
are similar to cantilever beams.

You immediately assign this critical task to a trusted intern.
She downloads the latest version (12.1.4) of Cantilever Physics,
an advanced cantilever beam simulation tool developed by Sandia
National Laboratories, and gets to work. After she shows you the results of
a few test cases, you remain uncertain about the design of the coat hooks.
It occurs to you that Dakota could help you to achieve greater confidence
in your analysis, and you ask her to begin developing an interface between
Dakota and Cantilever Physics.
Unfortunately, the summer ends before she is able to finish, leaving you on
the hook to complete the job.

Your task: Complete the Dakota-Cantilever Physics interface that your
intern left unfinished.

22

Exercise: Cantilever Beam Interface

Exercise materials are located in ~/exercises/interfacing.
They include:
 The Cantilever Physics executable, cantilever, along with an old input

file named cantilever.i. Try running it:

 ./cantilever cantilever.i

 A Dakota input file, dakota_cantilever.in

 An example Dakota parameters file, params.in, which you can use for
testing. (Generate your own params.in by adding the file_save
keyword to the Dakota input file.)

 driver.sh, a partially-complete interface script

23

General Interfacing Advice

 Think about automation from the beginning

 Sketch the workflow you are automating, and how Dakota will
interact with it

 Test each component/step (dakota input, pre-processing, run,
post-processing) in isolation

 Capture the results of each step to log files

 If a step fails, how would I know?
 Silent failures, where an erroneous value is returned to Dakota rather

than a crash, are the most dangerous!

 Avoid long chains of tools that multiply points of failure

 Treat your interface as though your conclusions depend on it!

24

DAKOTA INPUT
Interfacing

25

Dakota Input - Interface Block

The interface section of the input file tells Dakota how to run a simulation

Example:

Discussion: Browse to the Dakota Reference Manual, interface section and
call out some keywords that look particularly helpful.

 26

interface
 analysis_drivers = 'driver.sh '

 fork

 parameters_file = 'params.in '
 results_file = 'results.out '

 file_tag
 file_save

Interface type

Interface executable name

Names of param. and results files

Save and tag param. and results file

Excursis: Fork vs System vs Direct

 direct interface is used to run an analysis driver that has
been linked or compiled into Dakota
 Largely beyond the scope of this training

 One matter of practical interest: text_book

 See the Developer’s Manual on the website for more information

 fork and system are used to launch an external simulation
 The fork interface waits for your analysis driver to exit, then tries to

open your results file

 The system interface polls the OS for the existence of the results file,
and tries to read it as soon as it is written

 Practical consequence: When using the system interface, don’t create
the results file until the very end of your interface script

 In general, we recommend the fork interface

27

What else can Dakota do?

 Work directories separate evaluations

28

work_directory
 named 'workdir '
 directory_save directory_tag

work_directory
 link_files 'template/input.template '
 copy_files 'modified/* '

 Work directories can share common template files

• Naming optional

• Directories deleted by default

• Dakota writes params file to

each work directory, and

launches interface from there.

• Copy or link files or

entire directories into

your work dir before

launching interface

• Wildcards permitted

What else can Dakota do?

 Asynchronous execution helps with local parallelism

29

asynchronous
 evaluation_concurrency 2

• Run multiple evaluations concurrently

• By default, ALL available evals will run

• MUST use file_tag or

directory_tag

Your Simulation

 Ideally, you will leave
training this week with a
working interface to a
simulation of relevance to
you

 Give it a shot this evening
and discuss during office
hours

30

